MakeItFrom.com
Menu (ESC)

3003-O Aluminum vs. 6351-O Aluminum

Both 3003-O aluminum and 6351-O aluminum are aluminum alloys. Both are furnished in the annealed condition. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 3003-O aluminum and the bottom bar is 6351-O aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 28
16
Fatigue Strength, MPa 50
98
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 75
86
Tensile Strength: Ultimate (UTS), MPa 110
140
Tensile Strength: Yield (Proof), MPa 40
95

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 640
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 180
180
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
46
Electrical Conductivity: Equal Weight (Specific), % IACS 140
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
20
Resilience: Unit (Modulus of Resilience), kJ/m3 11
65
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 11
14
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 71
72
Thermal Shock Resistance, points 4.9
6.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.8 to 99
96 to 98.5
Copper (Cu), % 0.050 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 1.0 to 1.5
0.4 to 0.8
Silicon (Si), % 0 to 0.6
0.7 to 1.3
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15