MakeItFrom.com
Menu (ESC)

3004 Aluminum vs. 771.0 Aluminum

Both 3004 aluminum and 771.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 3004 aluminum and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 83
85 to 120
Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 1.1 to 19
1.7 to 6.5
Fatigue Strength, MPa 55 to 120
92 to 180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 170 to 310
250 to 370
Tensile Strength: Yield (Proof), MPa 68 to 270
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 630
620
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 160
140 to 150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
27
Electrical Conductivity: Equal Weight (Specific), % IACS 140
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 27
4.4 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 540
310 to 900
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 18 to 31
23 to 35
Strength to Weight: Bending, points 25 to 37
29 to 39
Thermal Diffusivity, mm2/s 65
54 to 58
Thermal Shock Resistance, points 7.6 to 13
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.6 to 98.2
90.5 to 92.5
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.15
Magnesium (Mg), % 0.8 to 1.3
0.8 to 1.0
Manganese (Mn), % 1.0 to 1.5
0 to 0.1
Silicon (Si), % 0 to 0.3
0 to 0.15
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
6.5 to 7.5
Residuals, % 0 to 0.15
0 to 0.15