MakeItFrom.com
Menu (ESC)

5050-H34 Aluminum vs. 5154A Aluminum

Both 5050-H34 aluminum and 5154A aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5050-H34 aluminum and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 53
58 to 100
Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 7.4
1.1 to 19
Fatigue Strength, MPa 90
83 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120
140 to 210
Tensile Strength: Ultimate (UTS), MPa 190
230 to 370
Tensile Strength: Yield (Proof), MPa 160
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 630
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 190
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
32
Electrical Conductivity: Equal Weight (Specific), % IACS 170
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 180
68 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 20
24 to 38
Strength to Weight: Bending, points 27
31 to 43
Thermal Diffusivity, mm2/s 79
53
Thermal Shock Resistance, points 8.4
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.3 to 98.9
93.7 to 96.9
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 1.1 to 1.8
3.1 to 3.9
Manganese (Mn), % 0 to 0.1
0 to 0.5
Silicon (Si), % 0 to 0.4
0 to 0.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15