MakeItFrom.com
Menu (ESC)

6061 Aluminum vs. Titanium 6-6-2

6061 aluminum belongs to the aluminum alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6061 aluminum and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 3.4 to 20
6.7 to 9.0
Fatigue Strength, MPa 58 to 110
590 to 670
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
44
Shear Strength, MPa 84 to 210
670 to 800
Tensile Strength: Ultimate (UTS), MPa 130 to 410
1140 to 1370
Tensile Strength: Yield (Proof), MPa 76 to 370
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
310
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 580
1560
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 170
5.5
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.7
4.8
Embodied Carbon, kg CO2/kg material 8.3
29
Embodied Energy, MJ/kg 150
470
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.8 to 81
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
34
Strength to Weight: Axial, points 13 to 42
66 to 79
Strength to Weight: Bending, points 21 to 45
50 to 57
Thermal Diffusivity, mm2/s 68
2.1
Thermal Shock Resistance, points 5.7 to 18
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.9 to 98.6
5.0 to 6.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.040 to 0.35
0
Copper (Cu), % 0.15 to 0.4
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0.35 to 1.0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0.4 to 0.8
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.15
82.8 to 87.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants