MakeItFrom.com
Menu (ESC)

6061-T6 Aluminum vs. 356.0-T6 Aluminum

Both 6061-T6 aluminum and 356.0-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6061-T6 aluminum and the bottom bar is 356.0-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 93
75
Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 10
3.8
Fatigue Strength, MPa 96
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 210
190
Tensile Strength: Ultimate (UTS), MPa 310
240
Tensile Strength: Yield (Proof), MPa 270
170

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 580
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Calomel Potential, mV -740
-730
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 520
190
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 31
26
Strength to Weight: Bending, points 37
33
Thermal Diffusivity, mm2/s 68
64
Thermal Shock Resistance, points 14
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.9 to 98.6
90.1 to 93.3
Chromium (Cr), % 0.040 to 0.35
0
Copper (Cu), % 0.15 to 0.4
0 to 0.25
Iron (Fe), % 0 to 0.7
0 to 0.6
Magnesium (Mg), % 0.8 to 1.2
0.2 to 0.45
Manganese (Mn), % 0 to 0.15
0 to 0.35
Silicon (Si), % 0.4 to 0.8
6.5 to 7.5
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.35
Residuals, % 0 to 0.15
0 to 0.15