MakeItFrom.com
Menu (ESC)

6061-T6 Aluminum vs. 7129-T6 Aluminum

Both 6061-T6 aluminum and 7129-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6061-T6 aluminum and the bottom bar is 7129-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 10
9.0
Fatigue Strength, MPa 96
150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 210
250
Tensile Strength: Ultimate (UTS), MPa 310
430
Tensile Strength: Yield (Proof), MPa 270
390

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 580
510
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
37
Resilience: Unit (Modulus of Resilience), kJ/m3 520
1090
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 31
41
Strength to Weight: Bending, points 37
43
Thermal Diffusivity, mm2/s 68
58
Thermal Shock Resistance, points 14
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.9 to 98.6
91 to 94
Chromium (Cr), % 0.040 to 0.35
0 to 0.1
Copper (Cu), % 0.15 to 0.4
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.7
0 to 0.3
Magnesium (Mg), % 0.8 to 1.2
1.3 to 2.0
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0.4 to 0.8
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
4.2 to 5.2
Residuals, % 0 to 0.15
0 to 0.15