MakeItFrom.com
Menu (ESC)

6063-T6 Aluminum vs. AISI 201L Stainless Steel

6063-T6 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063-T6 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
190 to 320
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11
22 to 46
Fatigue Strength, MPa 70
270 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 150
520 to 660
Tensile Strength: Ultimate (UTS), MPa 240
740 to 1040
Tensile Strength: Yield (Proof), MPa 210
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 620
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 320
220 to 1570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 25
27 to 37
Strength to Weight: Bending, points 32
24 to 30
Thermal Diffusivity, mm2/s 82
4.0
Thermal Shock Resistance, points 11
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
67.9 to 75
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0