MakeItFrom.com
Menu (ESC)

6063-T6 Aluminum vs. AISI 434 Stainless Steel

6063-T6 aluminum belongs to the aluminum alloys classification, while AISI 434 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063-T6 aluminum and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
170
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11
24
Fatigue Strength, MPa 70
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 150
330
Tensile Strength: Ultimate (UTS), MPa 240
520
Tensile Strength: Yield (Proof), MPa 210
320

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 650
1510
Melting Onset (Solidus), °C 620
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Calomel Potential, mV -740
-230
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.4
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1190
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
110
Resilience: Unit (Modulus of Resilience), kJ/m3 320
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 32
18
Thermal Diffusivity, mm2/s 82
6.7
Thermal Shock Resistance, points 11
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
78.6 to 83.3
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0