MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. 324.0 Aluminum

Both 7005 aluminum and 324.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is 324.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 10 to 20
3.0 to 4.0
Fatigue Strength, MPa 100 to 190
77 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 200 to 400
210 to 310
Tensile Strength: Yield (Proof), MPa 95 to 350
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 380
500
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 610
550
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 140 to 170
150
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
6.8 to 8.9
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
85 to 510
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
52
Strength to Weight: Axial, points 19 to 38
22 to 32
Strength to Weight: Bending, points 26 to 41
29 to 38
Thermal Diffusivity, mm2/s 54 to 65
62
Thermal Shock Resistance, points 8.7 to 18
9.7 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 94.7
87.3 to 92.2
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0.4 to 0.6
Iron (Fe), % 0 to 0.4
0 to 1.2
Magnesium (Mg), % 1.0 to 1.8
0.4 to 0.7
Manganese (Mn), % 0.2 to 0.7
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.35
7.0 to 8.0
Titanium (Ti), % 0.010 to 0.060
0 to 0.2
Zinc (Zn), % 4.0 to 5.0
0 to 1.0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.2

Comparable Variants