MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. B443.0 Aluminum

Both 7005 aluminum and B443.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is B443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 10 to 20
4.9
Fatigue Strength, MPa 100 to 190
55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120 to 230
110
Tensile Strength: Ultimate (UTS), MPa 200 to 400
150
Tensile Strength: Yield (Proof), MPa 95 to 350
50

Thermal Properties

Latent Heat of Fusion, J/g 380
470
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 610
600
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 140 to 170
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
38
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
18
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
52
Strength to Weight: Axial, points 19 to 38
15
Strength to Weight: Bending, points 26 to 41
23
Thermal Diffusivity, mm2/s 54 to 65
61
Thermal Shock Resistance, points 8.7 to 18
6.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 94.7
91.9 to 95.5
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0 to 0.4
0 to 0.8
Magnesium (Mg), % 1.0 to 1.8
0 to 0.050
Manganese (Mn), % 0.2 to 0.7
0 to 0.35
Silicon (Si), % 0 to 0.35
4.5 to 6.0
Titanium (Ti), % 0.010 to 0.060
0 to 0.25
Zinc (Zn), % 4.0 to 5.0
0 to 0.35
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.15