MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. EN 2.4668 Nickel

ACI-ASTM CA40 steel belongs to the iron alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10
14
Fatigue Strength, MPa 460
590
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 910
1390
Tensile Strength: Yield (Proof), MPa 860
1160

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Mechanical, °C 750
980
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1500
1410
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 25
13
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
75
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.0
13
Embodied Energy, MJ/kg 28
190
Embodied Water, L/kg 100
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 33
46
Strength to Weight: Bending, points 27
33
Thermal Diffusivity, mm2/s 6.7
3.5
Thermal Shock Resistance, points 33
40

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0.2 to 0.4
0.020 to 0.080
Chromium (Cr), % 11.5 to 14
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 81.5 to 88.3
11.2 to 24.6
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 0 to 0.5
2.8 to 3.3
Nickel (Ni), % 0 to 1.0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.5
0 to 0.35
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2