MakeItFrom.com
Menu (ESC)

AISI 304N Stainless Steel vs. C36500 Muntz Metal

AISI 304N stainless steel belongs to the iron alloys classification, while C36500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 304N stainless steel and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 9.1 to 45
40
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
39
Shear Strength, MPa 420 to 700
270
Tensile Strength: Ultimate (UTS), MPa 620 to 1180
400
Tensile Strength: Yield (Proof), MPa 270 to 850
160

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 960
120
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
32

Otherwise Unclassified Properties

Base Metal Price, % relative 15
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 43
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 280
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1830
120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 42
14
Strength to Weight: Bending, points 21 to 32
15
Thermal Diffusivity, mm2/s 4.2
40
Thermal Shock Resistance, points 14 to 26
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
58 to 61
Iron (Fe), % 66.4 to 73.9
0 to 0.15
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
37.5 to 41.8
Residuals, % 0
0 to 0.4