MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. C64210 Bronze

AISI 316 stainless steel belongs to the iron alloys classification, while C64210 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 55
35
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 80
77
Shear Modulus, GPa 78
42
Shear Strength, MPa 350 to 690
380
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
570
Tensile Strength: Yield (Proof), MPa 230 to 850
290

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 590
210
Melting Completion (Liquidus), °C 1400
1040
Melting Onset (Solidus), °C 1380
990
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 15
48
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
14

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 3.9
3.0
Embodied Energy, MJ/kg 53
49
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
170
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
360
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 41
19
Strength to Weight: Bending, points 18 to 31
18
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 11 to 26
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
89 to 92.2
Iron (Fe), % 62 to 72
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.25
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
1.5 to 2.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5