MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. R30155 Cobalt

Both AISI 316L stainless steel and R30155 cobalt are iron alloys. They have 63% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 350
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 9.0 to 50
34
Fatigue Strength, MPa 170 to 450
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
81
Shear Strength, MPa 370 to 690
570
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
850
Tensile Strength: Yield (Proof), MPa 190 to 870
390

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
570
Maximum Temperature: Mechanical, °C 870
1100
Melting Completion (Liquidus), °C 1400
1470
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 19
80
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 3.9
9.7
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 150
300

Common Calculations

PREN (Pitting Resistance) 26
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
230
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 19 to 41
28
Strength to Weight: Bending, points 18 to 31
24
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 12 to 25
21

Alloy Composition

Carbon (C), % 0 to 0.030
0.080 to 0.16
Chromium (Cr), % 16 to 18
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Iron (Fe), % 62 to 72
24.3 to 36.2
Manganese (Mn), % 0 to 2.0
1.0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
2.5 to 3.5
Nickel (Ni), % 10 to 14
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0 to 0.1
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0