MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. S41045 Stainless Steel

Both AISI 405 stainless steel and S41045 stainless steel are iron alloys. Both are furnished in the annealed condition. Their average alloy composition is basically identical. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is S41045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
25
Fatigue Strength, MPa 130
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 76
70
Shear Modulus, GPa 76
76
Shear Strength, MPa 300
280
Tensile Strength: Ultimate (UTS), MPa 470
430
Tensile Strength: Yield (Proof), MPa 200
230

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 390
430
Maximum Temperature: Mechanical, °C 820
740
Melting Completion (Liquidus), °C 1530
1450
Melting Onset (Solidus), °C 1480
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
29
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
8.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.2
Embodied Energy, MJ/kg 28
31
Embodied Water, L/kg 100
100

Common Calculations

PREN (Pitting Resistance) 13
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
92
Resilience: Unit (Modulus of Resilience), kJ/m3 100
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
16
Strength to Weight: Bending, points 17
16
Thermal Diffusivity, mm2/s 8.1
7.8
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 11.5 to 14.5
12 to 13
Iron (Fe), % 82.5 to 88.4
83.8 to 88
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.6
0 to 0.5
Niobium (Nb), % 0
0 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030