MakeItFrom.com
Menu (ESC)

AISI 431 Stainless Steel vs. EN 1.7380 Steel

Both AISI 431 stainless steel and EN 1.7380 steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 431 stainless steel and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
160 to 170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 17
19 to 20
Fatigue Strength, MPa 430 to 610
200 to 230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 550 to 840
330 to 350
Tensile Strength: Ultimate (UTS), MPa 890 to 1380
540 to 550
Tensile Strength: Yield (Proof), MPa 710 to 1040
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 850
460
Melting Completion (Liquidus), °C 1510
1470
Melting Onset (Solidus), °C 1450
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
3.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.2
1.8
Embodied Energy, MJ/kg 31
23
Embodied Water, L/kg 120
59

Common Calculations

PREN (Pitting Resistance) 16
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 180
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 2770
230 to 280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 50
19 to 20
Strength to Weight: Bending, points 27 to 36
19
Thermal Diffusivity, mm2/s 7.0
11
Thermal Shock Resistance, points 28 to 43
15 to 16

Alloy Composition

Carbon (C), % 0 to 0.2
0.080 to 0.14
Chromium (Cr), % 15 to 17
2.0 to 2.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 78.2 to 83.8
94.6 to 96.6
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.3 to 2.5
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010