MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. AISI 405 Stainless Steel

Both AISI 440A stainless steel and AISI 405 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 5.0 to 20
22
Fatigue Strength, MPa 270 to 790
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 450 to 1040
300
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
470
Tensile Strength: Yield (Proof), MPa 420 to 1650
200

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 400
390
Maximum Temperature: Mechanical, °C 760
820
Melting Completion (Liquidus), °C 1480
1530
Melting Onset (Solidus), °C 1370
1480
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
30
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
7.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.2
2.0
Embodied Energy, MJ/kg 31
28
Embodied Water, L/kg 120
100

Common Calculations

PREN (Pitting Resistance) 18
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
84
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26 to 65
17
Strength to Weight: Bending, points 23 to 43
17
Thermal Diffusivity, mm2/s 6.2
8.1
Thermal Shock Resistance, points 26 to 65
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.3
Carbon (C), % 0.6 to 0.75
0 to 0.080
Chromium (Cr), % 16 to 18
11.5 to 14.5
Iron (Fe), % 78.4 to 83.4
82.5 to 88.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030