MakeItFrom.com
Menu (ESC)

ASTM A572 Grade 65 vs. C87700 Bronze

ASTM A572 grade 65 belongs to the iron alloys classification, while C87700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A572 grade 65 and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
3.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 620
300
Tensile Strength: Yield (Proof), MPa 510
120

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 51
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
48

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 22
45
Embodied Water, L/kg 47
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 690
64
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
9.8
Strength to Weight: Bending, points 21
12
Thermal Diffusivity, mm2/s 14
34
Thermal Shock Resistance, points 18
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.26
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 97.3 to 99.5
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.5 to 1.7
0 to 0.8
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.040
0 to 0.15
Silicon (Si), % 0 to 0.4
2.5 to 3.5
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 2.0
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
7.0 to 9.0
Residuals, % 0
0 to 0.8