MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. EN AC-43100 Aluminum

AZ31B magnesium belongs to the magnesium alloys classification, while EN AC-43100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
71
Elongation at Break, % 5.6 to 12
1.1 to 2.5
Fatigue Strength, MPa 100 to 120
68 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
27
Tensile Strength: Ultimate (UTS), MPa 240 to 270
180 to 270
Tensile Strength: Yield (Proof), MPa 120 to 180
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 350
540
Maximum Temperature: Mechanical, °C 150
170
Melting Completion (Liquidus), °C 600
600
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 100
140
Thermal Expansion, µm/m-K 26
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
37
Electrical Conductivity: Equal Weight (Specific), % IACS 95
130

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.6
Embodied Carbon, kg CO2/kg material 23
7.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 970
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 25
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
66 to 360
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 70
54
Strength to Weight: Axial, points 39 to 44
20 to 29
Strength to Weight: Bending, points 50 to 55
28 to 36
Thermal Diffusivity, mm2/s 62
60
Thermal Shock Resistance, points 14 to 16
8.6 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.4 to 3.6
86.9 to 90.8
Calcium (Ca), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 0 to 0.050
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 93.6 to 97.1
0.2 to 0.45
Manganese (Mn), % 0.050 to 1.0
0 to 0.45
Nickel (Ni), % 0 to 0.0050
0 to 0.050
Silicon (Si), % 0 to 0.1
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0.5 to 1.5
0 to 0.1
Residuals, % 0 to 0.3
0 to 0.15

Comparable Variants