MakeItFrom.com
Menu (ESC)

AZ63A Magnesium vs. EN AC-45100 Aluminum

AZ63A magnesium belongs to the magnesium alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ63A magnesium and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
72
Elongation at Break, % 2.2 to 8.0
1.0 to 2.8
Fatigue Strength, MPa 76 to 83
82 to 99
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
27
Tensile Strength: Ultimate (UTS), MPa 190 to 270
300 to 360
Tensile Strength: Yield (Proof), MPa 81 to 120
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 350
470
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 610
630
Melting Onset (Solidus), °C 450
550
Specific Heat Capacity, J/kg-K 980
890
Thermal Conductivity, W/m-K 52 to 65
140
Thermal Expansion, µm/m-K 26
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12 to 15
30
Electrical Conductivity: Equal Weight (Specific), % IACS 59 to 74
95

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 1.8
2.8
Embodied Carbon, kg CO2/kg material 22
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 970
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 16
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 71 to 160
290 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 66
49
Strength to Weight: Axial, points 29 to 41
30 to 35
Strength to Weight: Bending, points 40 to 51
35 to 39
Thermal Diffusivity, mm2/s 29 to 37
54
Thermal Shock Resistance, points 11 to 16
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.3 to 6.7
88 to 92.8
Copper (Cu), % 0 to 0.25
2.6 to 3.6
Iron (Fe), % 0
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 88.6 to 92.1
0.15 to 0.45
Manganese (Mn), % 0.15 to 0.35
0 to 0.55
Nickel (Ni), % 0 to 0.010
0 to 0.1
Silicon (Si), % 0 to 0.3
4.5 to 6.0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 2.5 to 3.5
0 to 0.2
Residuals, % 0 to 0.3
0 to 0.15

Comparable Variants