MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. EN 2.4650 Nickel

AZ80A magnesium belongs to the magnesium alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 3.9 to 8.5
34
Fatigue Strength, MPa 140 to 170
480
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
80
Shear Strength, MPa 160 to 190
730
Tensile Strength: Ultimate (UTS), MPa 320 to 340
1090
Tensile Strength: Yield (Proof), MPa 210 to 230
650

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 130
1010
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 490
1350
Specific Heat Capacity, J/kg-K 990
450
Thermal Conductivity, W/m-K 77
12
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 59
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
80
Density, g/cm3 1.7
8.5
Embodied Carbon, kg CO2/kg material 23
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 990
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
320
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
1030
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
23
Strength to Weight: Axial, points 51 to 55
36
Strength to Weight: Bending, points 60 to 63
28
Thermal Diffusivity, mm2/s 45
3.1
Thermal Shock Resistance, points 19 to 20
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.8 to 9.2
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0 to 0.050
0 to 0.2
Iron (Fe), % 0 to 0.0050
0 to 0.7
Magnesium (Mg), % 89 to 91.9
0
Manganese (Mn), % 0.12 to 0.5
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0 to 0.0050
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Titanium (Ti), % 0
1.9 to 2.4
Zinc (Zn), % 0.2 to 0.8
0
Residuals, % 0 to 0.3
0