MakeItFrom.com
Menu (ESC)

OS050 C10100 Copper vs. OS050 C10800 Copper

Both OS050 C10100 copper and OS050 C10800 copper are copper alloys. Both are furnished in the OS050 (annealed to 0.050mm grain size) temper. Their average alloy composition is basically identical.

For each property being compared, the top bar is OS050 C10100 copper and the bottom bar is OS050 C10800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 50
48
Poisson's Ratio 0.34
0.34
Rockwell F Hardness 40
40
Shear Modulus, GPa 43
43
Shear Strength, MPa 150
150
Tensile Strength: Ultimate (UTS), MPa 220
220
Tensile Strength: Yield (Proof), MPa 69
75

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1080
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
350
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
92
Electrical Conductivity: Equal Weight (Specific), % IACS 100
92

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 9.0
9.0
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
82
Resilience: Unit (Modulus of Resilience), kJ/m3 21
24
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
6.8
Strength to Weight: Bending, points 9.0
9.1
Thermal Diffusivity, mm2/s 110
100
Thermal Shock Resistance, points 7.8
7.8

Alloy Composition

Copper (Cu), % 99.99 to 100
99.95 to 99.995
Lead (Pb), % 0 to 0.0010
0
Oxygen (O), % 0 to 0.00050
0
Phosphorus (P), % 0 to 0.00030
0.0050 to 0.012
Zinc (Zn), % 0 to 0.00010
0