MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. CC212E Bronze

Grade 5 titanium belongs to the titanium alloys classification, while CC212E bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is CC212E bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
130
Elongation at Break, % 8.6 to 11
20
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
47
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
710
Tensile Strength: Yield (Proof), MPa 910 to 1110
310

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 330
220
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1650
1020
Specific Heat Capacity, J/kg-K 560
440
Thermal Expansion, µm/m-K 8.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
27
Density, g/cm3 4.4
8.2
Embodied Carbon, kg CO2/kg material 38
3.4
Embodied Energy, MJ/kg 610
55
Embodied Water, L/kg 200
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
390
Stiffness to Weight: Axial, points 13
8.5
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 62 to 75
24
Strength to Weight: Bending, points 50 to 56
21
Thermal Shock Resistance, points 76 to 91
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
7.0 to 9.0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
68 to 77
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
2.0 to 4.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
8.0 to 15
Nickel (Ni), % 0
1.5 to 4.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.4
0