MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. C43000 Brass

Grade 5 titanium belongs to the titanium alloys classification, while C43000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 8.6 to 11
3.0 to 55
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Shear Strength, MPa 600 to 710
230 to 410
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
320 to 710
Tensile Strength: Yield (Proof), MPa 910 to 1110
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1610
1030
Melting Onset (Solidus), °C 1650
1000
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 6.8
120
Thermal Expansion, µm/m-K 8.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
28

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.4
8.6
Embodied Carbon, kg CO2/kg material 38
2.8
Embodied Energy, MJ/kg 610
46
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
82 to 1350
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 62 to 75
10 to 23
Strength to Weight: Bending, points 50 to 56
12 to 20
Thermal Diffusivity, mm2/s 2.7
36
Thermal Shock Resistance, points 76 to 91
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
84 to 87
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Tin (Sn), % 0
1.7 to 2.7
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0 to 0.4
0 to 0.5