MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. C91300 Bell Metal

Grade 5 titanium belongs to the titanium alloys classification, while C91300 bell metal belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is C91300 bell metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 8.6 to 11
0.5
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
38
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
240
Tensile Strength: Yield (Proof), MPa 910 to 1110
210

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 330
150
Melting Completion (Liquidus), °C 1610
890
Melting Onset (Solidus), °C 1650
820
Specific Heat Capacity, J/kg-K 560
360
Thermal Expansion, µm/m-K 8.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
7.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
39
Density, g/cm3 4.4
8.6
Embodied Carbon, kg CO2/kg material 38
4.5
Embodied Energy, MJ/kg 610
74
Embodied Water, L/kg 200
460

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
1.1
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
210
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62 to 75
7.8
Strength to Weight: Bending, points 50 to 56
10
Thermal Shock Resistance, points 76 to 91
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
79 to 82
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.25
Lead (Pb), % 0
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
18 to 20
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.6