MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. C51000 Bronze

SAE-AISI 1070 steel belongs to the iron alloys classification, while C51000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 13
2.7 to 64
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
42
Shear Strength, MPa 380 to 460
250 to 460
Tensile Strength: Ultimate (UTS), MPa 640 to 760
330 to 780
Tensile Strength: Yield (Proof), MPa 420 to 560
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
960
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 50
77
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
18
Electrical Conductivity: Equal Weight (Specific), % IACS 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
33
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 19
50
Embodied Water, L/kg 46
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
7.0 to 490
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
75 to 2490
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 27
10 to 25
Strength to Weight: Bending, points 21 to 24
12 to 21
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 21 to 25
12 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.65 to 0.75
0
Copper (Cu), % 0
92.9 to 95.5
Iron (Fe), % 98.3 to 98.8
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.35
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
4.5 to 5.8
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5