MakeItFrom.com
Menu (ESC)

SAE-AISI 1090 Steel vs. ASTM A369 Grade FP91

Both SAE-AISI 1090 steel and ASTM A369 grade FP91 are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1090 steel and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 280
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11
19
Fatigue Strength, MPa 320 to 380
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
75
Shear Strength, MPa 470 to 570
410
Tensile Strength: Ultimate (UTS), MPa 790 to 950
670
Tensile Strength: Yield (Proof), MPa 520 to 610
460

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 400
600
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
26
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
10

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
37
Embodied Water, L/kg 46
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 91
110
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1000
560
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 28 to 34
24
Strength to Weight: Bending, points 24 to 27
22
Thermal Diffusivity, mm2/s 13
6.9
Thermal Shock Resistance, points 25 to 31
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0.85 to 1.0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Iron (Fe), % 98 to 98.6
87.3 to 90.3
Manganese (Mn), % 0.6 to 0.9
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0.2 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.025
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010