MakeItFrom.com
Menu (ESC)

C10100 Copper vs. ASTM A182 Grade F6b

C10100 copper belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C10100 copper and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.5 to 50
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 150 to 240
530
Tensile Strength: Ultimate (UTS), MPa 220 to 410
850
Tensile Strength: Yield (Proof), MPa 69 to 400
710

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
750
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1080
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
8.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 41
30
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 85
140
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 690
1280
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 13
30
Strength to Weight: Bending, points 9.0 to 14
26
Thermal Diffusivity, mm2/s 110
6.7
Thermal Shock Resistance, points 7.8 to 15
31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 99.99 to 100
0 to 0.5
Iron (Fe), % 0
81.2 to 87.1
Lead (Pb), % 0 to 0.0010
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Oxygen (O), % 0 to 0.00050
0
Phosphorus (P), % 0 to 0.00030
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.00010
0