MakeItFrom.com
Menu (ESC)

C18700 Copper vs. C47000 Brass

Both C18700 copper and C47000 brass are copper alloys. They have 59% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is C47000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 9.0 to 9.6
36
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 290 to 330
380
Tensile Strength: Yield (Proof), MPa 230 to 250
150

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
900
Melting Onset (Solidus), °C 950
890
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 380
120
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 9.0
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
100
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 9.0 to 10
13
Strength to Weight: Bending, points 11 to 12
15
Thermal Diffusivity, mm2/s 110
38
Thermal Shock Resistance, points 10 to 12
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Copper (Cu), % 98 to 99.2
57 to 61
Lead (Pb), % 0.8 to 1.5
0 to 0.050
Tin (Sn), % 0
0.25 to 1.0
Zinc (Zn), % 0
37.5 to 42.8
Residuals, % 0 to 0.5
0 to 0.4