MakeItFrom.com
Menu (ESC)

C23000 Brass vs. C63000 Bronze

Both C23000 brass and C63000 bronze are copper alloys. They have 81% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.9 to 47
7.9 to 15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
44
Shear Strength, MPa 220 to 340
400 to 470
Tensile Strength: Ultimate (UTS), MPa 280 to 590
660 to 790
Tensile Strength: Yield (Proof), MPa 83 to 480
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 1030
1050
Melting Onset (Solidus), °C 990
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 160
39
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 39
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 43
57
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
470 to 640
Stiffness to Weight: Axial, points 7.2
7.9
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 8.9 to 19
22 to 26
Strength to Weight: Bending, points 11 to 18
20 to 23
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 9.4 to 20
23 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
9.0 to 11
Copper (Cu), % 84 to 86
76.8 to 85
Iron (Fe), % 0 to 0.050
2.0 to 4.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
4.0 to 5.5
Silicon (Si), % 0
0 to 0.25
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 13.7 to 16
0 to 0.3
Residuals, % 0 to 0.2
0 to 0.5