MakeItFrom.com
Menu (ESC)

C23000 Brass vs. C83400 Brass

Both C23000 brass and C83400 brass are copper alloys. They have a very high 95% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.9 to 47
30
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 280 to 590
240
Tensile Strength: Yield (Proof), MPa 83 to 480
69

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1030
1040
Melting Onset (Solidus), °C 990
1020
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 160
190
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
44
Electrical Conductivity: Equal Weight (Specific), % IACS 39
46

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 43
43
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
55
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
21
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 8.9 to 19
7.7
Strength to Weight: Bending, points 11 to 18
9.9
Thermal Diffusivity, mm2/s 48
57
Thermal Shock Resistance, points 9.4 to 20
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 84 to 86
88 to 92
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 13.7 to 16
8.0 to 12
Residuals, % 0 to 0.2
0 to 0.7