MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. C70700 Copper-nickel

Both C62400 bronze and C70700 copper-nickel are copper alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11 to 14
39
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
46
Shear Strength, MPa 420 to 440
220
Tensile Strength: Ultimate (UTS), MPa 690 to 730
320
Tensile Strength: Yield (Proof), MPa 270 to 350
110

Thermal Properties

Latent Heat of Fusion, J/g 230
220
Maximum Temperature: Mechanical, °C 220
220
Melting Completion (Liquidus), °C 1040
1120
Melting Onset (Solidus), °C 1030
1060
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 59
59
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
11
Electrical Conductivity: Equal Weight (Specific), % IACS 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 27
34
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 3.2
3.4
Embodied Energy, MJ/kg 53
52
Embodied Water, L/kg 400
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
100
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
51
Stiffness to Weight: Axial, points 7.6
7.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 23 to 25
10
Strength to Weight: Bending, points 21 to 22
12
Thermal Diffusivity, mm2/s 16
17
Thermal Shock Resistance, points 25 to 26
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Copper (Cu), % 82.8 to 88
88.5 to 90.5
Iron (Fe), % 2.0 to 4.5
0 to 0.050
Manganese (Mn), % 0 to 0.3
0 to 0.5
Nickel (Ni), % 0
9.5 to 10.5
Silicon (Si), % 0 to 0.25
0
Tin (Sn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0 to 0.5