MakeItFrom.com
Menu (ESC)

C85800 Brass vs. C85700 Brass

Both C85800 brass and C85700 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 15
17
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 380
310
Tensile Strength: Yield (Proof), MPa 210
110

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 900
940
Melting Onset (Solidus), °C 870
910
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 84
84
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
22
Electrical Conductivity: Equal Weight (Specific), % IACS 22
25

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
41
Resilience: Unit (Modulus of Resilience), kJ/m3 210
59
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 13
11
Strength to Weight: Bending, points 15
13
Thermal Diffusivity, mm2/s 27
27
Thermal Shock Resistance, points 13
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.55
0 to 0.8
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 57 to 69
58 to 64
Iron (Fe), % 0 to 0.5
0 to 0.7
Lead (Pb), % 0 to 1.5
0.8 to 1.5
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0 to 1.0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0 to 0.050
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
0.5 to 1.5
Zinc (Zn), % 31 to 41
32 to 40
Residuals, % 0 to 1.3
0 to 1.3