MakeItFrom.com
Menu (ESC)

C90300 Bronze vs. C31600 Bronze

Both C90300 bronze and C31600 bronze are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C90300 bronze and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
6.7 to 28
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 330
270 to 460
Tensile Strength: Yield (Proof), MPa 150
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1000
1040
Melting Onset (Solidus), °C 850
1010
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 75
140
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
32
Electrical Conductivity: Equal Weight (Specific), % IACS 12
33

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 56
43
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 110
28 to 690
Stiffness to Weight: Axial, points 7.0
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
8.5 to 15
Strength to Weight: Bending, points 12
11 to 15
Thermal Diffusivity, mm2/s 23
42
Thermal Shock Resistance, points 12
9.4 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 89
87.5 to 90.5
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.3
1.3 to 2.5
Nickel (Ni), % 0 to 1.0
0.7 to 1.2
Phosphorus (P), % 0 to 1.5
0.040 to 0.1
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 7.5 to 9.0
0
Zinc (Zn), % 3.0 to 5.0
5.2 to 10.5
Residuals, % 0 to 0.6
0 to 0.4