MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. CC751S Brass

Both C90500 gun metal and CC751S brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 68% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is CC751S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
5.6
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320
450
Tensile Strength: Yield (Proof), MPa 160
320

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 1000
850
Melting Onset (Solidus), °C 850
810
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 75
110
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
25
Electrical Conductivity: Equal Weight (Specific), % IACS 11
28

Otherwise Unclassified Properties

Base Metal Price, % relative 35
24
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 59
46
Embodied Water, L/kg 390
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
23
Resilience: Unit (Modulus of Resilience), kJ/m3 110
480
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10
15
Strength to Weight: Bending, points 12
16
Thermal Diffusivity, mm2/s 23
35
Thermal Shock Resistance, points 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0 to 0.1
Antimony (Sb), % 0 to 0.2
0 to 0.5
Copper (Cu), % 86 to 89
62.7 to 66
Iron (Fe), % 0 to 0.2
0.25 to 0.5
Lead (Pb), % 0 to 0.3
0.8 to 2.2
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0 to 1.0
0 to 0.8
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0.65 to 1.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0 to 0.8
Zinc (Zn), % 1.0 to 3.0
27.9 to 35.6
Residuals, % 0 to 0.3
0