MakeItFrom.com
Menu (ESC)

C92500 Bronze vs. C70700 Copper-nickel

Both C92500 bronze and C70700 copper-nickel are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C92500 bronze and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
39
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
46
Tensile Strength: Ultimate (UTS), MPa 310
320
Tensile Strength: Yield (Proof), MPa 190
110

Thermal Properties

Latent Heat of Fusion, J/g 190
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 980
1120
Melting Onset (Solidus), °C 870
1060
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 63
59
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
11
Electrical Conductivity: Equal Weight (Specific), % IACS 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 35
34
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 61
52
Embodied Water, L/kg 390
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
51
Stiffness to Weight: Axial, points 6.8
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.8
10
Strength to Weight: Bending, points 12
12
Thermal Diffusivity, mm2/s 20
17
Thermal Shock Resistance, points 12
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 85 to 88
88.5 to 90.5
Iron (Fe), % 0 to 0.3
0 to 0.050
Lead (Pb), % 1.0 to 1.5
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.8 to 1.5
9.5 to 10.5
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10 to 12
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.7
0 to 0.5