MakeItFrom.com
Menu (ESC)

C93600 Bronze vs. AISI 202 Stainless Steel

C93600 bronze belongs to the copper alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93600 bronze and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
200
Elongation at Break, % 14
14 to 45
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 36
77
Tensile Strength: Ultimate (UTS), MPa 260
700 to 980
Tensile Strength: Yield (Proof), MPa 140
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 150
910
Melting Completion (Liquidus), °C 940
1400
Melting Onset (Solidus), °C 840
1360
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 49
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 51
40
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 98
250 to 840
Stiffness to Weight: Axial, points 6.1
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 7.9
25 to 35
Strength to Weight: Bending, points 9.9
23 to 29
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 9.8
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.55
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 79 to 83
0
Iron (Fe), % 0 to 0.2
63.5 to 71.5
Lead (Pb), % 11 to 13
0
Manganese (Mn), % 0
7.5 to 10
Nickel (Ni), % 0 to 1.0
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 1.5
0 to 0.060
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.7
0