MakeItFrom.com
Menu (ESC)

C93600 Bronze vs. ASTM A182 Grade F24

C93600 bronze belongs to the copper alloys classification, while ASTM A182 grade F24 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93600 bronze and the bottom bar is ASTM A182 grade F24.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
190
Elongation at Break, % 14
23
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 36
74
Tensile Strength: Ultimate (UTS), MPa 260
670
Tensile Strength: Yield (Proof), MPa 140
460

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 150
460
Melting Completion (Liquidus), °C 940
1470
Melting Onset (Solidus), °C 840
1430
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 49
39
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.3
Embodied Energy, MJ/kg 51
33
Embodied Water, L/kg 370
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
140
Resilience: Unit (Modulus of Resilience), kJ/m3 98
570
Stiffness to Weight: Axial, points 6.1
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 7.9
24
Strength to Weight: Bending, points 9.9
22
Thermal Diffusivity, mm2/s 16
11
Thermal Shock Resistance, points 9.8
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0 to 0.020
Antimony (Sb), % 0 to 0.55
0
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
2.2 to 2.6
Copper (Cu), % 79 to 83
0
Iron (Fe), % 0 to 0.2
94.5 to 96.1
Lead (Pb), % 11 to 13
0
Manganese (Mn), % 0
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.12
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0.15 to 0.45
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 6.0 to 8.0
0
Titanium (Ti), % 0
0.060 to 0.1
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.7
0