MakeItFrom.com
Menu (ESC)

C93600 Bronze vs. EN 1.4854 Stainless Steel

C93600 bronze belongs to the copper alloys classification, while EN 1.4854 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93600 bronze and the bottom bar is EN 1.4854 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
200
Elongation at Break, % 14
45
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 36
78
Tensile Strength: Ultimate (UTS), MPa 260
750
Tensile Strength: Yield (Proof), MPa 140
340

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 150
1170
Melting Completion (Liquidus), °C 940
1370
Melting Onset (Solidus), °C 840
1330
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 49
11
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 3.2
5.7
Embodied Energy, MJ/kg 51
81
Embodied Water, L/kg 370
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
270
Resilience: Unit (Modulus of Resilience), kJ/m3 98
280
Stiffness to Weight: Axial, points 6.1
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 7.9
26
Strength to Weight: Bending, points 9.9
23
Thermal Diffusivity, mm2/s 16
2.9
Thermal Shock Resistance, points 9.8
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.55
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 79 to 83
0
Iron (Fe), % 0 to 0.2
33.6 to 40.6
Lead (Pb), % 11 to 13
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
34 to 36
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
1.2 to 2.0
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.7
0