MakeItFrom.com
Menu (ESC)

C95600 Bronze vs. CC382H Copper-nickel

Both C95600 bronze and CC382H copper-nickel are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95600 bronze and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 15
20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
53
Tensile Strength: Ultimate (UTS), MPa 500
490
Tensile Strength: Yield (Proof), MPa 230
290

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 210
260
Melting Completion (Liquidus), °C 1000
1180
Melting Onset (Solidus), °C 980
1120
Specific Heat Capacity, J/kg-K 430
410
Thermal Conductivity, W/m-K 39
30
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
41
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.0
5.2
Embodied Energy, MJ/kg 50
76
Embodied Water, L/kg 360
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
85
Resilience: Unit (Modulus of Resilience), kJ/m3 230
290
Stiffness to Weight: Axial, points 7.5
8.8
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 17
15
Strength to Weight: Bending, points 17
16
Thermal Diffusivity, mm2/s 11
8.2
Thermal Shock Resistance, points 18
16

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 88 to 92.2
62.8 to 68.4
Iron (Fe), % 0
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0.5 to 1.0
Nickel (Ni), % 0 to 0.25
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 1.8 to 3.2
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 1.0
0