MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. C49300 Brass

Both C95700 bronze and C49300 brass are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
100
Elongation at Break, % 23
4.5 to 20
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 47
40
Tensile Strength: Ultimate (UTS), MPa 680
430 to 520
Tensile Strength: Yield (Proof), MPa 310
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 230
170
Maximum Temperature: Mechanical, °C 220
120
Melting Completion (Liquidus), °C 990
880
Melting Onset (Solidus), °C 950
840
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 12
88
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 26
26
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 3.3
3.0
Embodied Energy, MJ/kg 54
50
Embodied Water, L/kg 360
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 390
220 to 800
Stiffness to Weight: Axial, points 8.5
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 23
15 to 18
Strength to Weight: Bending, points 21
16 to 18
Thermal Diffusivity, mm2/s 3.3
29
Thermal Shock Resistance, points 21
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.5
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 71 to 78.5
58 to 62
Iron (Fe), % 2.0 to 4.0
0 to 0.1
Lead (Pb), % 0 to 0.030
0 to 0.010
Manganese (Mn), % 11 to 14
0 to 0.030
Nickel (Ni), % 1.5 to 3.0
0 to 1.5
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 0.1
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0 to 0.5
0 to 0.5