MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. C92900 Bronze

Both C95700 bronze and C92900 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 77% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
110
Elongation at Break, % 23
9.1
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 47
40
Tensile Strength: Ultimate (UTS), MPa 680
350
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 990
1030
Melting Onset (Solidus), °C 950
860
Specific Heat Capacity, J/kg-K 440
370
Thermal Conductivity, W/m-K 12
58
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
35
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 3.3
3.8
Embodied Energy, MJ/kg 54
61
Embodied Water, L/kg 360
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
27
Resilience: Unit (Modulus of Resilience), kJ/m3 390
170
Stiffness to Weight: Axial, points 8.5
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 23
11
Strength to Weight: Bending, points 21
13
Thermal Diffusivity, mm2/s 3.3
18
Thermal Shock Resistance, points 21
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 71 to 78.5
82 to 86
Iron (Fe), % 2.0 to 4.0
0 to 0.2
Lead (Pb), % 0 to 0.030
2.0 to 3.2
Manganese (Mn), % 11 to 14
0
Nickel (Ni), % 1.5 to 3.0
2.8 to 4.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.7