MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. C72900 Copper-nickel

Both C95800 bronze and C72900 copper-nickel are copper alloys. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 22
6.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 660
870 to 1080
Tensile Strength: Yield (Proof), MPa 270
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 230
210
Melting Completion (Liquidus), °C 1060
1120
Melting Onset (Solidus), °C 1040
950
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 36
29
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
39
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 3.4
4.6
Embodied Energy, MJ/kg 55
72
Embodied Water, L/kg 370
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 310
2030 to 3490
Stiffness to Weight: Axial, points 7.9
7.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 22
27 to 34
Strength to Weight: Bending, points 20
23 to 27
Thermal Diffusivity, mm2/s 9.9
8.6
Thermal Shock Resistance, points 23
31 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0
Copper (Cu), % 79 to 83.2
74.1 to 78
Iron (Fe), % 3.5 to 4.5
0 to 0.5
Lead (Pb), % 0 to 0.030
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.8 to 1.5
0 to 0.3
Nickel (Ni), % 4.0 to 5.0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.3