MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. EN 1.4477 Stainless Steel

C96200 copper-nickel belongs to the copper alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 23
22 to 23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 46
81
Tensile Strength: Ultimate (UTS), MPa 350
880 to 930
Tensile Strength: Yield (Proof), MPa 190
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1150
1430
Melting Onset (Solidus), °C 1100
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 45
13
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
20
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.8
3.7
Embodied Energy, MJ/kg 58
52
Embodied Water, L/kg 300
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 150
940 to 1290
Stiffness to Weight: Axial, points 7.8
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
31 to 33
Strength to Weight: Bending, points 13
26 to 27
Thermal Diffusivity, mm2/s 13
3.5
Thermal Shock Resistance, points 12
23 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 83.6 to 90
0 to 0.8
Iron (Fe), % 1.0 to 1.8
56.6 to 63.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 9.0 to 11
5.8 to 7.5
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.015
Residuals, % 0 to 0.5
0