MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. EN 1.7230 Steel

C96200 copper-nickel belongs to the copper alloys classification, while EN 1.7230 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is EN 1.7230 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 23
11 to 12
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 350
720 to 910
Tensile Strength: Yield (Proof), MPa 190
510 to 740

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
420
Melting Completion (Liquidus), °C 1150
1460
Melting Onset (Solidus), °C 1100
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 45
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.4
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.5
Embodied Energy, MJ/kg 58
20
Embodied Water, L/kg 300
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
79 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 150
700 to 1460
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11
26 to 32
Strength to Weight: Bending, points 13
23 to 27
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 12
21 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0.3 to 0.37
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 83.6 to 90
0
Iron (Fe), % 1.0 to 1.8
96.7 to 98.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0.5 to 0.8
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0