MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. C95800 Bronze

Both C96200 copper-nickel and C95800 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 88% of their average alloy composition in common.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 23
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 46
44
Tensile Strength: Ultimate (UTS), MPa 350
660
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 220
230
Maximum Temperature: Mechanical, °C 220
230
Melting Completion (Liquidus), °C 1150
1060
Melting Onset (Solidus), °C 1100
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 45
36
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 3.8
3.4
Embodied Energy, MJ/kg 58
55
Embodied Water, L/kg 300
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
310
Stiffness to Weight: Axial, points 7.8
7.9
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 11
22
Strength to Weight: Bending, points 13
20
Thermal Diffusivity, mm2/s 13
9.9
Thermal Shock Resistance, points 12
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 83.6 to 90
79 to 83.2
Iron (Fe), % 1.0 to 1.8
3.5 to 4.5
Lead (Pb), % 0 to 0.010
0 to 0.030
Manganese (Mn), % 0 to 1.5
0.8 to 1.5
Nickel (Ni), % 9.0 to 11
4.0 to 5.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Residuals, % 0 to 0.5
0 to 0.5