MakeItFrom.com
Menu (ESC)

S30452 Stainless Steel vs. AISI 444 Stainless Steel

Both S30452 stainless steel and AISI 444 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 90% of their average alloy composition in common.

For each property being compared, the top bar is S30452 stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
23
Fatigue Strength, MPa 250
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 88
83
Shear Modulus, GPa 77
78
Shear Strength, MPa 440
300
Tensile Strength: Ultimate (UTS), MPa 660
470
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
580
Maximum Temperature: Mechanical, °C 960
930
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
23
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 15
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.4
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 23
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
95
Resilience: Unit (Modulus of Resilience), kJ/m3 250
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 4.2
6.2
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.025
Chromium (Cr), % 18 to 20
17.5 to 19.5
Iron (Fe), % 66.3 to 73.8
73.3 to 80.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 8.0 to 10.5
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0.16 to 0.3
0 to 0.035
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8