MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. S28200 Stainless Steel

WE54A magnesium belongs to the magnesium alloys classification, while S28200 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is S28200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
260
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 4.3 to 5.6
45
Fatigue Strength, MPa 98 to 130
430
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Shear Strength, MPa 150 to 170
610
Tensile Strength: Ultimate (UTS), MPa 270 to 300
870
Tensile Strength: Yield (Proof), MPa 180
460

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 570
1330
Specific Heat Capacity, J/kg-K 960
480
Thermal Expansion, µm/m-K 25
18

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 1.9
7.6
Embodied Carbon, kg CO2/kg material 29
2.8
Embodied Energy, MJ/kg 260
41
Embodied Water, L/kg 900
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
330
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
540
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 62
26
Strength to Weight: Axial, points 39 to 43
32
Strength to Weight: Bending, points 49 to 51
27
Thermal Shock Resistance, points 18 to 19
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.030
0.75 to 1.3
Iron (Fe), % 0 to 0.010
57.7 to 64.1
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
17 to 19
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0 to 0.0050
0
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0