MakeItFrom.com
Menu (ESC)

ZK60A Magnesium vs. 5154 Aluminum

ZK60A magnesium belongs to the magnesium alloys classification, while 5154 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ZK60A magnesium and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
68
Elongation at Break, % 4.5 to 9.9
3.4 to 20
Fatigue Strength, MPa 150 to 180
100 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 170 to 190
140 to 210
Tensile Strength: Ultimate (UTS), MPa 320 to 330
240 to 360
Tensile Strength: Yield (Proof), MPa 230 to 250
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 26
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 30
32
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 1.9
2.7
Embodied Carbon, kg CO2/kg material 23
8.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 940
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 29
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 690
64 to 540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
51
Strength to Weight: Axial, points 47 to 49
25 to 37
Strength to Weight: Bending, points 55 to 56
32 to 42
Thermal Diffusivity, mm2/s 66
52
Thermal Shock Resistance, points 19 to 20
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
94.4 to 96.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0
0 to 0.4
Magnesium (Mg), % 92.5 to 94.8
3.1 to 3.9
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 4.8 to 6.2
0 to 0.2
Zirconium (Zr), % 0.45 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.15