MakeItFrom.com
Menu (ESC)

ZK60A Magnesium vs. AWS E219

ZK60A magnesium belongs to the magnesium alloys classification, while AWS E219 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK60A magnesium and the bottom bar is AWS E219.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 4.5 to 9.9
17
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
78
Tensile Strength: Ultimate (UTS), MPa 320 to 330
690

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 26
15

Otherwise Unclassified Properties

Base Metal Price, % relative 13
15
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 23
3.1
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 940
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 47 to 49
25
Strength to Weight: Bending, points 55 to 56
23
Thermal Diffusivity, mm2/s 66
3.8
Thermal Shock Resistance, points 19 to 20
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
19 to 21.5
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 0
58.6 to 67.4
Magnesium (Mg), % 92.5 to 94.8
0
Manganese (Mn), % 0
8.0 to 10
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
5.5 to 7.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 1.0
0
Residuals, % 0 to 0.3
0